If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+12y-18=0
a = 4; b = 12; c = -18;
Δ = b2-4ac
Δ = 122-4·4·(-18)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{3}}{2*4}=\frac{-12-12\sqrt{3}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{3}}{2*4}=\frac{-12+12\sqrt{3}}{8} $
| 4y^+12y-18=0 | | 13q+5=5+18q | | 14z+3.02=13.7-0.97 | | -6(4m+4)=-222 | | 9a=4a=26 | | 14z+3.02=13.7z-0.97 | | 7n^2+16n=-4 | | 14z+3.0z=13.7z-0.97 | | 5(n+7)=7n+29 | | 2j=-10+j | | -19-16f-13=-19f+4 | | 7(1-7x)+x=103 | | 5x+3=2×+6 | | -8(8+7n)=272 | | 4+4u=-9u-9 | | 3x÷5+18=2÷3-3x | | 1+9s=-5+5s+6s | | X+4-3x=-20+x | | 9=3y-15 | | -6+6r=1+7r | | -3-4n=10-8n+7 | | 32=y/5+12 | | 2b-6=-4+b | | 2=1.075^t | | 10j-3=-8+5j | | 16x=31 | | 10j=3=-8+5j | | 3x/5-18=2/3-3x | | 2x^2-16x+30=30 | | 10-8d=-3d | | 10r+6r+4r=20 | | -10+7b=-10-6b |